On quasi-symmetric designs with intersection difference three

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On quasi-symmetric designs with intersection difference three

In a recent paper, Pawale [22] investigated quasi-symmetric 2-(v, k, λ) designs with intersection numbers x > 0 and y = x+ 2 with λ > 1 and showed that under these conditions either λ = x + 1 or λ = x + 2, or D is a design with parameters given in the form of an explicit table, or the complement of one of these designs. In this paper, quasi-symmetric designs with y−x = 3 are investigated. It is...

متن کامل

Quasi-symmetric 3-designs with a fixed block intersection number

Quasi-symmetric 3-designs with block intersection numbers x, y (0 ≤ x ≤ y < k) are studied. It is proved that the parameter λ of a quasi-symmetric 3-(v, k, λ) design satisfies a quadratic whose coefficients are polynomial functions of k, x and y. We use this quadratic to prove that there exist finitely many quasi-symmetric 3-designs under either of the following two restrictions: 1. The block i...

متن کامل

A note on quasi-symmetric designs

A quasi-symmetric design is a (v, k, λ) design with two intersection numbers x, y where 0 ≤ x < y < k. We show that for fixed x, y, λ with x > 1, λ > 1, y = λ and λ (4xy + ((y − x) − 2x− 2y + 1)λ) a perfect square of a positive integer, there exist finitely many quasi-symmetric designs. We rule out the possibilities of quasi-symmetric designs corresponding to y = x + 3 and (λ, x) = (9, 2), (8, ...

متن کامل

Maximal arcs and quasi-symmetric designs

In 2001, Blokhuis and Haemers gave an interesting construction for quasisymmetric designs with parameters 2-(q, q(q − 1)/2, q(q − q − 2)/4) and block intersection numbers q(q − 2)/4 and q(q − 1)/4 (where q ≥ 4 is a power of 2), which uses maximal arcs in the affine plane AG(2, q) and produces examples embedded into affine 3-space AG(3, q). We consider this construction in more detail and in a m...

متن کامل

Polarities, quasi-symmetric designs, and Hamada's conjecture

We prove that every polarity of PG(2k − 1, q), where k ≥ 2, gives rise to a design with the same parameters and the same intersection numbers as, but not isomorphic to PGk(2k, q). In particular, the case k = 2 yields a new family of quasi-symmetric designs. We also show that our construction provides an infinite family of counterexamples to Hamada’s conjecture, for any field of prime order p. P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Designs, Codes and Cryptography

سال: 2011

ISSN: 0925-1022,1573-7586

DOI: 10.1007/s10623-011-9536-7